929 research outputs found

    Saying Hello World with Epsilon - A Solution to the 2011 Instructive Case

    Full text link
    Epsilon is an extensible platform of integrated and task-specific languages for model management. With solutions to the 2011 TTC Hello World case, this paper demonstrates some of the key features of the Epsilon Object Language (an extension and reworking of OCL), which is at the core of Epsilon. In addition, the paper introduces several of the task-specific languages provided by Epsilon including the Epsilon Generation Language (for model-to-text transformation), the Epsilon Validation Language (for model validation) and Epsilon Flock (for model migration).Comment: In Proceedings TTC 2011, arXiv:1111.440

    SIGMA: Scala Internal Domain-Specific Languages for Model Manipulations

    Get PDF
    International audienceModel manipulation environments automate model operations such as model consistency checking and model transformation. A number of external model manipulation Domain-Specific Languages (DSL) have been proposed, in particular for the Eclipse Modeling Framework (EMF). While their higher levels of abstraction result in gains in expressiveness over general-purpose languages, their limitations in versatility, performance, and tool support together with the need to learn new languages may significantly contribute to accidental complexities. In this paper, we present Sigma, a family of internal DSLs embedded in Scala for EMF model consistency checking, model-to-model and model-to-text transformations. It combines the benefits of external model manipulation DSLs with general-purpose programming taking full advantage of Scala versatility, performance and tool support. The DSLs are compared to the state-of-the-art Epsilon languages in non-trivial model manipulation tasks that resulted in 20% to 70% reduction in code size and significantly better performance

    Women’s mental health during pregnancy: A participatory qualitative study

    Get PDF
    Background/objectives: British public health and academic policy and guidance promotes service user involvement in health care and research, however collaborative research remains underrepresented in literature relating to pregnant women’s mental health. The aim of this participatory research was to explore mothers’ and professionals’ perspectives on the factors that influence pregnant women’s mental health. Method: This qualitative research was undertaken in England with the involvement of three community members who had firsthand experience of mental health problems during pregnancy. All members of the team were involved in study design, recruitment, data generation and different stages of thematic analysis. Data were transcribed for individual and group discussions with 17 women who self-identified as experiencing mental health problems during pregnancy and 15 professionals who work with this group. Means of establishing trustworthiness included triangulation, researcher reflexivity, peer debriefing and comprehensive data analysis. Findings: Significant areas of commonality were identified between mothers’ and professionals’ perspectives on factors that undermine women’s mental health during pregnancy and what is needed to support women’s mental health. Analysis of data is provided with particular reference to contexts of relational, systemic and ecological conditions in women’s lives. Conclusions: Women’s mental health is predominantly undermined or supported by relational, experiential and material factors. The local context of socio-economic deprivation is a significant influence on women’s mental health and service requirements

    A Comparison of Model Migration Tools

    Get PDF
    International audienceModelling languages and thus their metamodels are subject to change. When a metamodel evolves, existing models may no longer conform to the evolved metamodel. To avoid rebuilding them from scratch, existing models must be migrated to conform to the evolved metamodel. Manually migrating existing models is tedious and errorprone. To alleviate this, several tools have been proposed to build a migration strategy that automates the migration of existing models. Little is known about the advantages and disadvantages of the tools in different situations. In this paper, we thus compare a representative sample of migration tools - AML, COPE, Ecore2Ecore and Epsilon Flock - using common migration examples. The criteria used in the comparison aim to support users in selecting the most appropriate tool for their situation

    Uncertainties in power computations in a turbocharger test bench

    Full text link
    A specific study of the uncertainties of turbine power output measured in turbocharger test benches is presented using the law of uncertainty propagation and the influence of the different terms that contribute to it is shown. Then, non-linear mixed integer mathematical programming algorithms used with the turbine power uncertainty expression become an essential tool to overcome the problem of selection new sensors to improve an existing test rig or to contribute to a new one. A method of optimisation is presented for two different scenarios: first, where the maximum cost is a constraint; second where the maximum uncertainty is a constraint and the total cost is minimised. When using a large transducers database, computational efforts may be reduced by solving the relaxed non-integer problem by means of sequential quadratic programming and then probing the ceilings and floors of the parameters to get an optimum approximation with low costs. A comparison between the linear uncertainty propagation model and Monte Carlo simulations is also presented, only showing benefits of the later method when computing high order statistical moments of the turbine power output probability distribution.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovacion through Grant No. DPI2010-20891-C02-02 and by the Spanish Ministerio de Economia y Competitividad through Grant No. TRA2012-36954.Olmeda GonzĂĄlez, PC.; Tiseira Izaguirre, AO.; Dolz Ruiz, V.; GarcĂ­a-Cuevas GonzĂĄlez, LM. (2015). Uncertainties in power computations in a turbocharger test bench. Measurement. 59:363-371. https://doi.org/10.1016/j.measurement.2014.09.055S3633715

    The role of humic non-exchangeable binding in the promotion of metal ion

    Get PDF
    Metal ions form strong complexes with humic substances. When the metal ion is first complexed by humic material, it is bound in an ‘exchangeable’ mode. The metal ion in this fraction is strongly bound, however, if the metal–humic complex encounters a stronger binding site on a surface, then the metal ion may dissociate from the humic substance and be immobilised. However, over time, exchangeably-bound metal may transfer to a ‘non-exchangeable’ mode. Transfer into this mode and dissociation from it are slow, regardless of the strength of the competing sink, and so immobilisation may be hindered. A series of coupled chemical transport calculations has been performed to investigate the likely effects of non-exchangeable binding upon the transport of metal ions in the environment. The calculations show that metal in the nonexchangeable mode will have a significantly higher mobility than that in the exchangeable mode. The critical factor is the ratio of the non-exchangeable first-order dissociation rate constant and the residence time in the groundwater column, metal ion mobility increasing with decreasing rate constant. A second series of calculations has investigated the effect of the sorption to surfaces of humic/metal complexes on the transport of the non-exchangeably bound metal. It was found that such sorption may reduce mobility, depending upon the humic fraction to which the metal ion is bound. For the more weakly sorbing humic fractions, under ambient conditions (humic concentration etc.) the non-exchangeable fraction may still transport significantly. However, for the more strongly sorbed fractions, the non-exchangeable fraction has little effect upon mobility. In addition to direct retardation, sorption also increases the residence time of the nonexchangeable fraction, giving more time for dissociation and immobilisation. The nonexchangeable dissociation reaction, and the sorption reaction have been classified in terms of two Damkohler numbers, which can be used to determine the importance of chemical kinetics during transport calculations. These numbers have been used to develop a set of rules that determine when full chemical kinetic calculations are required for a reliable prediction, and when equilibrium may be assumed, or when the reactions are sufficiently slow that they may be ignored completely

    Knowledge politics and new converging technologies: a social epistemological perspective

    Get PDF
    The “new converging technologies” refers to the prospect of advancing the human condition by the integrated study and application of nanotechnology, biotechnology, information technology and the cognitive sciences - or “NBIC”. In recent years, it has loomed large, albeit with somewhat different emphases, in national science policy agendas throughout the world. This article considers the political and intellectual sources - both historical and contemporary - of the converging technologies agenda. Underlying it is a fluid conception of humanity that is captured by the ethically challenging notion of “enhancing evolution”

    Towards the systematic construction of domain-specific transformation languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-09195-2-13Proceedings of 10th European Conference, ECMFA 2014, Held as Part of STAF 2014, York, UK, July 21-25, 2014General-purpose transformation languages, like ATL or QVT, are the basis for model manipulation in Model-Driven Engineering (MDE). However, as MDE moves to more complex scenarios, there is the need for specialized transformation languages for activities like model merging, migration or aspect weaving, or for specific domains of wide use like UML. Such domain-specific transformation languages (DSTLs) encapsulate transformation knowledge within a language, enabling the reuse of recurrent solutions to transformation problems. Nowadays, many DSTLs are built in an ad-hoc manner, which requires a high development cost to achieve a full-featured implementation. Alternatively, they are realised by an embedding into general-purpose transformation or programming languages like ATL or Java. In this paper, we propose a framework for the systematic creation of DSTLs. First, we look into the characteristics of domain-specific transformation tools, deriving a categorization which is the basis of our framework. Then, we propose a domain-specific language to describe DSTLs, from which we derive a ready-to-run workbench which includes the abstract syntax, concrete syntax and translational semantics of the DSTL.This work has been funded by the Spanish Ministry of Economy and Competitivity with project “Go Lite” (TIN2011-24139

    Scattering of elastic waves by periodic arrays of spherical bodies

    Full text link
    We develop a formalism for the calculation of the frequency band structure of a phononic crystal consisting of non-overlapping elastic spheres, characterized by Lam\'e coefficients which may be complex and frequency dependent, arranged periodically in a host medium with different mass density and Lam\'e coefficients. We view the crystal as a sequence of planes of spheres, parallel to and having the two dimensional periodicity of a given crystallographic plane, and obtain the complex band structure of the infinite crystal associated with this plane. The method allows one to calculate, also, the transmission, reflection, and absorption coefficients for an elastic wave (longitudinal or transverse) incident, at any angle, on a slab of the crystal of finite thickness. We demonstrate the efficiency of the method by applying it to a specific example.Comment: 19 pages, 5 figures, Phys. Rev. B (in press
    • 

    corecore